If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-87.5=0
a = 2; b = 3; c = -87.5;
Δ = b2-4ac
Δ = 32-4·2·(-87.5)
Δ = 709
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{709}}{2*2}=\frac{-3-\sqrt{709}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{709}}{2*2}=\frac{-3+\sqrt{709}}{4} $
| 21x-5=16x+20 | | 5t(4.8)=24 | | 5x^2-7x-42=0 | | (33+-y)(y)=200 | | 33-y+2y=66 | | 8-8+3a=5a-2a | | (2w+5)w=250 | | 2w+5*w=250 | | -z/2+25=42 | | 2(3x-5)=13 | | 3^(2y)-4(3^(y+1)+27=0 | | A35=-27(35+15n) | | -9d-8=19 | | 17(4-3m)=96(-m/2+1 | | x/5+7=x/2+4 | | 11x+23=67 | | b=8+2 | | 9x-24=6x-12 | | (2x+5)+(8x-14)+(45-x)=180 | | 3x+1=x=11+ | | 16=x^2-10x-25 | | 8x-77=x+38 | | 6x+127=180 | | 5(y+6)-8y=9 | | 5(y+6)-8=9 | | 6(d+1)=-20 | | 17+b+2b=17 | | 17-b+2b=17 | | 5n+1+n=1+4n-5n | | -1=7-6n+8n | | 25^3y=125 | | (a)*30=210A |